A Novel Noncircular MUSIC Algorithm Based on the Concept of the Difference and Sum Coarray

نویسندگان

  • Zhenhong Chen
  • Yingtao Ding
  • Shiwei Ren
  • Zhiming Chen
چکیده

In this paper, we propose a vectorized noncircular MUSIC (VNCM) algorithm based on the concept of the coarray, which can construct the difference and sum (diff-sum) coarray, for direction finding of the noncircular (NC) quasi-stationary sources. Utilizing both the NC property and the concept of the Khatri-Rao product, the proposed method can be applied to not only the ULA but also sparse arrays. In addition, we utilize the quasi-stationary characteristic instead of the spatial smoothing method to solve the coherent issue generated by the Khatri-Rao product operation so that the available degree of freedom (DOF) of the constructed virtual array will not be reduced by half. Compared with the traditional NC virtual array obtained in the NC MUSIC method, the diff-sum coarray achieves a higher number of DOFs as it comprises both the difference set and the sum set. Due to the complementarity between the difference set and the sum set for the coprime array, we choose the coprime array with multiperiod subarrays (CAMpS) as the array model and summarize the properties of the corresponding diff-sum coarray. Furthermore, we develop a diff-sum coprime array with multiperiod subarrays (DsCAMpS) whose diff-sum coarray has a higher DOF. Simulation results validate the effectiveness of the proposed method and the high DOF of the diff-sum coarray.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Incremental DC Algorithm for the Minimum Sum-of-Squares Clustering

Here, an algorithm is presented for solving the minimum sum-of-squares clustering problems using their difference of convex representations. The proposed algorithm is based on an incremental approach and applies the well known DC algorithm at each iteration. The proposed algorithm is tested and compared with other clustering algorithms using large real world data sets.

متن کامل

An Improved DOA Estimation Approach Using Coarray Interpolation and Matrix Denoising

Co-prime arrays can estimate the directions of arrival (DOAs) of O ( M N ) sources with O ( M + N ) sensors, and are convenient to analyze due to their closed-form expression for the locations of virtual lags. However, the number of degrees of freedom is limited due to the existence of holes in difference coarrays if subspace-based algorithms such as the spatial smoothing multiple signal classi...

متن کامل

Coarrays, MUSIC, and the Cramér-Rao Bound

Sparse linear arrays, such as co-prime arrays and nested arrays, have the attractive capability of providing enhanced degrees of freedom. By exploiting the coarray structure, an augmented sample covariance matrix can be constructed and MUSIC (MUtiple SIgnal Classification) can be applied to identify more sources than the number of sensors. While such a MUSIC algorithm works quite well, its perf...

متن کامل

کاربرد الگوریتم جداسازی کور منابع در جداسازی سیگنال‌های گفتار و موسیقی

In this paper, the application of the Independent Component Analysis In this paper, the application of the Independent Component Analysis technique in speech-music separation is discussed. The separation algorithm is in the time domain. It needs the score function estimation to minimize the mutual information. For estimating score function, sufficient samples of the mixed (speech-music) signals...

متن کامل

Improved Coarray Interpolation Algorithms with Additional Orthogonal Constraint for Cyclostationary Signals

Many modulated signals exhibit a cyclostationarity property, which can be exploited in direction-of-arrival (DOA) estimation to effectively eliminate interference and noise. In this paper, our aim is to integrate the cyclostationarity with the spatial domain and enable the algorithm to estimate more sources than sensors. However, DOA estimation with a sparse array is performed in the coarray do...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 18  شماره 

صفحات  -

تاریخ انتشار 2018